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5-Formyl-1,3-dimethyl/1,3,6-trimethyl uracils (1) react with malononitrile, ethyl cyanoacetate, phenyl acetonitrile/acetyl

acetone in Knoevenagel and with diethyl/dimethyl malonates in Stobbe modes to provide respective 5-(ethoxy/methoxy

carbonyl)vinyluracils.

The presence of 5-vinyl substituents in uracils due to
enhancement of conjugative and Michael acceptor abilities
could trigger other than C-6 attack of the thiol group of the
enzyme thymidylate synthase. Thus by inhibiting the enzyme
functions such systems would acquire antitumor properties.1

Amongst these, halo- or acyl-vinyluracils are available
through arduous methodologies, and studies with such sub-
strates having strong electron withdrawing group(s) on the
vinyl moiety, which should further enhance their Michael
acceptor properties, have not been possible because of
their non-availability. Here, we report that heating of
5-formyluracils with active methylene compounds, without
solvent, provides a simple methodology for the synthesis of
5-(substituted alkenyl)uracils (Scheme 1).

A homogeneous mixture of 1a and 2a on heating at

11525 88C (without solvent) gives 3a (85%). From the

appearance of two singlets at d 7.97 (6-H) and 8.75 (vinyl

H) in the 1H NMR spectrum and an absorption band at

2250 cmÿ1 in the IR spectrum and other spectral data, this

compound can be assigned structure 3a. Similarly, 1a reacts

with 2b (11525 88C) and 2c [11525 88C in the presence

of triethylamine (0.05 equiv.)] to provide 5-vinyluracils 3b

(70%), mp 200±205 88C and 3c (70%), mp 225±230 88C,
respectively. Therefore, for weaker carbon acids, the use

of higher temperatures and base becomes essential. For the

reaction of 1a with nitromethane [11525 88C, triethylamine

(0.05 equiv.)], compounds 6 (30%), mp 115 88C and 7 (20%),

mp 135 88C are formed. The reactions of ketone based active
methylene compounds, ethyl acetoacetate and acetylacetone
with 1a give a multitude of products, which could not be
separated.
All these reactions proceed by the attack of active methyl-

ene compounds 2 and nitromethane on formyl carbon
followed by elimination of a water molecule. For the
reaction with nitromethane, 7 undergoes slow elimination of
water but once water is eliminated, the respective 5-nitro-
vinyluracil undergoes subsequent addition of a further
molecule of nitromethane to form 6.

5-Formyl-1,3,6-trimethyluracil (1b) is known to show
somewhat di�erent reaction modes with nucleophiles. Under
basic conditions, an anion is generated at the 6-Me carbon
which reacts at any electrophilic site present on the nucleo-
philic reactant.12 Here, under neutral reaction conditions, a
homogeneous mixture of 1b and malononitrile on heating
at 11525 88C for 10 h gives 4a (60%), mp 230±235 88C, M�

m/z 230. Similarly, 1a on heating with ethyl cyanoacetate
for 48 h gives 4b (62%), mp 108±110 88C but phenyl aceto-
nitrile, even in the presence of triethylamine, fails to react.
1b on heating with acetylacetone (72 h, 11525 88C) provides
4d along with traces of 6-acetyl-1,3,7-trimethylquinazoline-
2,4(1H,3H)-dione, mp 210 88C (lit.,10 210±211 88C) but with
ethyl acetoacetate only quinazoline derivative 8 is formed.
Therefore, reactions of 1b with active methylene compounds
require higher temperature or longer reaction time in com-
parison with reactions of 1a. Probably, the steric hinderance
of the 6-Me unit slows down the attack of active methylene
compound on the 5-formyl carbon.
These reactions constitute cases of Knoevenagel type

condensations which when performed under the usual basic
conditions are plagued by base catalyzed ring transform-
ations at the intermediate stage and the respective 5-vinyl-
uracils are not formed.10,13

Uracils 1a and 1b on heating with diethyl malonate
provide 5-vinyluracil derivatives 5a (65%), mp 138±140 88C
and 5c (65%), mp 135 88C, respectively. 1a reacts with
dimethyl malonate to form 5b. The formation of 5 could
be rationalised through the formation of a b-lactone inter-
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Scheme 1 For 2, 3 and 4: a R1 � R2 � CN; b R1 � CN,
R2 � CO2Et; c R1 � CN, R2 � Ph; d R1 � R2 � COMe
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mediate (9) followed by loss of carbon dioxide. The
formation of such intermediates is quite similar to Stobbe
condensation15 reactions of carbonyl compounds with
succinate and glutarate esters where intermediate g- and d-
lactones are hydrolysed to half esters. However, in the pre-
sent case, the transient less stable b-lactone ring undergoes
decarboxylative collapse to generate the vinyl group. To the
best of our knowledge, the formation of compounds 5 con-
stitutes unprecedented cases of Stobbe type condensations
with malonate esters and this mode of reaction provides a
simple and practicable synthesis of carboxyvinyluracils, the
key intermediate in the synthesis of 5-bromovinyluracils.16

Thus, 5-formyluracils on heating with active methylene
compounds undergo facile Knoevenagel and Stobbe type
condensations to provide the respective 5-vinyluracil deriva-
tives.
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